SEMESTER – III METABOLISM OF BIOMOLECULES PRACTICAL

Programme: B.Sc. Max. Hours: 45
Course Code: U20/BIC/DSC/301/P Hours per week: 3
Course Type: DSC - 3 Max. Marks: 50

No. of credits: 1

Course objective:

Inculcate the importance of quantitative estimations into students for the field of Biochemistry.

Course Outcomes:

CO1: Enhance the skills for quantitative estimation of biomolecules.

CO2: Isolate different enzymes and apply the knowledge of quantitative estimation to check the activity of the same.

PRACTICAL SESSIONS

- 1. Verification of Beer Lambert's Law
- 2. Absorption Maxima of coloured substances.
- 3. Estimation of Reducing sugar by DNS
- 4. Estimation of Fructose by Roe's Resorcinol Method
- 5. Estimation of Total Sugars by Anthrone Method
- 6. Estimation of Protein by FolinCiocalteau Method
- 7. Estimation of Protein by Biuret Method
- 8. Enzyme Assay of Amylase
- 9. Enzyme Assay of Catalase
- 10. Enzyme Assay of Urease

MODEL QUESTION PAPER

PRACTICAL

Course Code: U20/BIC/DSC/101/P Max Time: 2 Hrs
Credits: 1 Max. Marks: 50

Answer the following

1. Write the principles for the given experiments. $2 \times 5 = 10 \text{ M}$

a)

b)

2. Quantitatively estimate the given sample using the appropriate method. 20 M Plot the calibration curve for the standard. Identify the concentration for the given unknown sample.

3. Estimate the activity of the given enzyme sample. 10 M

4. Viva 5 M

5. Record 5 M