Max. Marks: 100

SEMESTER – VI PLANT BIOCHEMISTRY PRACTICAL

Programme: B.Sc. Max. Hours: 45
Course Code: U20/BIC/DSE/601 Hours per week: 3

Course Type: DSE – 1 No. of credits: 3

Course objective:

Introduce the basic practical knowledge of plant biochemistry.

Course Outcomes:

CO1: Analyse various plant contents like pigments and secondary metabolites.

CO2: Remember the procedure and technique of Plant tissue culture.

PRACTICAL SESSIONS

- 1. Estimation of Total Soluble Sugar.
- 2. Estimation of Total phenolic content using Folin-Ciocalteau method
- 3. Qualitative Analysis of Phytochemicals
- 4. Estimation of Carotene.
- 5. Estimation of Lycopene content of tomato.
- 6. Estimation of Pectin Substances as Calcium Pectate
- 7. Determination of Antioxidant activity by DPPH method.
- 8. Separation of Plant pigments by Thin Layer Chromatography
- 9. Determination of Catalase Enzyme activity
- 10. Plant tissue culture (Demo)

MODEL QUESTION PAPER

PRACTICAL

Course Code: U20/BIC/DSC/101/P Max. Time: 2 Hrs
Credits: 1 Max. Marks: 50

Answer the following

Answer the following		
1.	Write the principles for the given experiments.	$2 \times 5 = 10 \text{ M}$
	a)	
	b)	
2.	Quantitatively estimate the given sample using the appropriate method. Plot the calibration curve for the standard. Identify the concentration for the given unknown sample.	20 M
3.	Separate the mixture of plant pigments using Thin layer Chromatography. Identify the pigments present in the mixture.	10 M
4.	Viva	5 M
5.	Record	5 M