CBCS-2020 Sem III Pesticides

SEMESTER – III PESTICIDES THEORY

Programme:M.Sc. Max.Hours: 60
Course Code: P20/CHE/DSE/304 Hours per week:4
Course Type: DSE -4 Max.Marks: 100

No. Of Credits: 4

COURSE OBJECTIVES:

- To discuss the classification and importance of pesticides. Introduction to Pest control, Biological pheromones, insect juvenile hormones and Environmental pollution from pesticides.
- Different synthetic methods of pesticides, mode of action, formulation and residue analysis of various insecticides.
- Synthesis and importance of Insecticides of palnt origin. Concept of Bioinsecticides and pro-insecticides. Synthesis, applications and mode of action of Herbicides
- Classification, synthesis, application and mode of action of Fungicides and Rodenticides

COURSE OUTCOMES:

- **CO1:** Students are able to explain the importance, classification of pesticides and how pesticides leads to environmental pollution
- CO2: Sketch the different synthetic methods and outline the mode of action of pesticides.
- **CO3**: Outline the synthesis, applications and mode of action of Bioinsecticides, proinsecticides and Herbicides.
- **CO4**: Discuss the classification, synthesis, application and mode of action of Fungicides and Rodenticides

CBCS-2020 Sem III Pesticides

MODULE1: INTRODUCTION TO PESTICIDES

(15 Hrs)

- i) **Definition**, Classification and importance of pesticides
- ii) Pest control: Different methods –chemicafungicides, herbicidrodenticides, fumigants,
- iii) chitin synthesis inhibitors and insect repellents.
- a) Biological–pheremones: Definition and classDisparlure, Exobrevicomin, Endobrevicomin, frontalin and grandiso pheromones, synthetic sex attractants.
- b) Insect juvenile hormones: JH-A, JH-B,Synthesis of juvabione. Structural formula and importance of methopren.
- c) Moultingharmones-structural formulae and mode of action of ecdysones
- d) Antibiotics and secondary metabolites of microbial origin as insecticides and fungicides in agricultiure. Structural formula and importance of Blasticidin-S, Kasugamycin, Avermectin-B, Invermectin, piercidins and phytoalexins.
- iv) Environmental pollution from pesticides.iv) Integrated pest management.
- v) Pesticide formulations: Dusts, Granules, Wettable powders, Emmulsions and Aerosols.

MODULE 2: SYNTHETIC INSECTICIDES

(15 Hrs)

- i) **Organochlorine insecticides** synthesis and mode of action of methoxychlor, perthan, Dicofol, Heptachlor, Dieldrin and Endosulfan.
- ii) **Organophosphorous insecticides** –synthesis and mode action of Phosphoric acid derivatives,phosdrin, Dichlorophos, parathion, Zolone, Aninphomethyl, TEPP and Sachradan.
- iii) **Carbamate insecticides** synthesis and mode of action of carbamyl, Furadan, Baygon, Aldicarb and Zectron.
- iv) Formulation and residue analysis of organochlorine, organophophorous and carbamate insecticides.

MODULE 3: NATURAL INSECTICIDESAND HERBICIDES

(15 Hrs)

i) Insecticides of palnt origin —synthesis and importance of pyrethrins (I and II), Rotenone and Nicotine. Main constituentsNeem-structural formula of Azadirachtin. Synthesis of polygodial and warbunganol(Antifeedants). Synthesis of pyrethroids: synthesis of Allethrin, Bioallethrin, Cypermethrin, Fenvalerate, Decemethrin and pyrithrelone.

Concept of Bioinsecticides—Bacillus thiuringiensis.

CBCS-2020 Sem III Pesticides

Concept of pro-insecticides-structure and mode of action of pro-pheremonesandpre- pro-insecticides.

v)Herbicides—synthesis, applications and mode of action of the following

)Aryloxyalkyl carboxylic acid derivative:2,4-D, MCPA,2,4,5-T and 2,4,5-TP.b) Carbamates-propham and chloropham, c)Urea derivatives –Monouron and diuron, d) Aliphatic acids-Dalapon,TCA, e)Aromatic acids -2,3,6-TBA,Dicomba and Amiben, f)Nitrogen heterocyclic dericvatives –Simazine,Atrazine,Amitrole,MaleichydrazideDiquat and paraquat, g) Phenols-PCP and Dinoseb, h) Benzonitrile compounds

Module 4: Fungicides, and Rodenticides

15 Hrs

- i) Fungicides –classification ,synthesis application and mode of action of the following classes:
 - a) Carbamates b)Quinones-chloranil,DichloneandBenquinox
 - c)perchloromethylmercaptanderivative -captan,folpet,Difolatan and Mesulfan
 - d) Benzimidazoles-carbendazim, Benomyl and Thiabandazole
- **ii)** Rodenticides, a) Anticoagulents-synthesis and application of warfarin, Coumachlor, Vacor, Coumatetrallyl, Dicoumarol and Bromodiolen.b) Acute poisons- application of pindone, Ratindan, Sodium Fluoroacetate, Barium fluoroacetate, Antu, Tetramine, pindone and castrix.

Reference books:

- 1) Naturally occurring insecticides: M.Jacobson and D.G.Crosby. Insecticides for future: Jacobson
- 2) Insect juvenile harmone chemistry and action: J.J Mann and M.Beroza
- 3) Polygodial and warburganal. Terpenoidantifeedants part-II rec, Tran, chin 106
- 4) Insect antifeedants: S.V.ley&P.LToogood, chemistry in Britain, Jan 1990 P.31
- 5) Synthesis of Insecticides : Metcalf
- 6) Fungicides-Frear
- 7) Fungicides-Nene
- 8) Residue reviews vol.36: Melnikov
- 9) Safer insecticides: E.Hodgson

Crop protection agents from Nature: leonard G Copping

Biofertilizers and Bioinsecticides: A.M.Deshmukh

10) Insecticides and Fungicides: USriramulu.

Organo chlorine insecticides: persistent organic pollutants: F.Moriary

- 11) Herbicides: P.C. Kearney & D.D. Kaufnan
- 12) Analytical Method for pesticides : Z. Weig (Vol III)
- 13)Pesticide formulations : Van Valkenburg
- 14)Insecticides : A.S. Tahori
- 15) Herbicides, fungicides, formulation chemistry-A.S. Tahori
- 16) Environmental pollution by pesticides: C.A. Edwards
- 17) Pespticides managements and insecticide resistance: Watson and brown
- 18)Organo phosphorous pesticide